0021-8928(93)E0015-O

REMARKS ON THE ASYMPTOTIC MOTIONS OF MECHANICAL SYSTEMS†

R. M. BULATOVICH

Podgoritsa

(Received 19 February 1992)

The problem of the existence of asymptotic motions of mechanical systems in the case when the Maclaurin series of the potential energy begins with a permanently positive quadratic form is investigated using the methods described in [1].

1. First we consider the motion of a mechanical system which is described by Lagrange's equations with an analytic Lagrangian

$$\frac{d}{dt} \frac{\partial L}{\partial x^*} - \frac{\partial L}{\partial x} = 0, \quad x \in \mathbb{R}^n; \quad L(x, x^*) = T(x, x^*) - \Pi(x)$$
(1.1)

where $T = \frac{1}{2} \langle K(x)x^*, x^* \rangle$ is the kinetic energy (K(x)) is a positive definite matrix and \langle , \rangle is a scalar product in R_n) and $\Pi(x)$ is the potential energy. Let us assume that system (1.1) has a position of equilibrium which, without any loss of generality, we consider to be the origin of coordinates, and let $\Pi(0) = 0$. A motion $x(t) \neq 0$ is referred to as asymptotic motion if $x(t) \to 0$ when $t \to \infty$. By virtue of time reversibility (x(-t)) is also a motion, the instability of the equilibrium in the sense of the Lyapunov definition follows from the fact that an asymptotic motion exists.

The hypothesis has been formulated in [2]: if the function $\Pi(x)$ does not have a minimum at the point x = 0, then an asymptotic motion exists.

The proof of this hypothesis is a complex problem which has been solved under certain additional conditions. The first results in this area were obtained by Kneser [3] while the most powerful results are due to Kozlov [1]. We will supplement these assertions with Theorems 1 and 2 which are presented below and we will then formulate certain generalizations to non-real systems.

Suppose

$$\Pi(x) = \Pi_2(x) + \Pi_j(x) + \dots (2 < j)$$
 (1.2)

are the expansion of the potential energy in a Maclaurin series, Π_i are homogeneous forms of degree i and Π_j is the first non-trivial form after the quadratic form. Henceforth it is assumed that the quadratic form Π_2 has l $(1 \le l \le n)$ zero eigenvalues and n-l positive ones. We note that, if l=0, the equilibrium is stable and there are no asymptotic motions. We will denote by P the restriction of the function Π in an l-dimensional plane $\pi = \{x: \Pi_2(x) = 0\}$.

Theorem 1. System (1.1), (1.2) possesses an asymptotic motion if one of the two following conditions is satisfied:

- (a) the function $\Pi(x)$ has no minimum at the point x=0 and $P\equiv 0$,
- (b) the first non-trivial form P, in the expansion of the function P can take negative values.

†Prikl. Mat. Mekh. Vol. 57, No. 4, pp. 135-137, 1993.

We note that in case (b), the forms Π_j, \ldots, Π_{r-1} can take both positive and negative values. When r = j, case (b) is identical with the result obtained in [1].

Proof. Normal coordinates can be introduced in the neighbourhood of the point x = 0 in which (E is a unit matrix)

$$T = \frac{1}{2} ((E + B(x))x^*, x^*), \quad B(0) = 0$$

$$\Pi = \frac{1}{2} (Dy, y) + \Pi_i(x) + \dots, \quad D = \text{diag}(\lambda_i), \lambda_i > 0, \quad i = 1, \dots, n - l$$
(1.3)

$$x = (y, z), y \in \mathbb{R}^{n-l}, z \in \mathbb{R}^l$$
 (1.4)

According to the splitting lemma [4], by means of a linear substitution of the form

$$\overline{y} = y + b(x), \ b(x) = b_{j-1}(x) + b_j(x) + \dots, \ \overline{z} = z$$
 (1.5)

it is possible to reduce expansion (1.4) to the form

$$\overline{\Pi} = \frac{1}{2} \langle D\overline{y}, \overline{y} \rangle + W(\overline{z}), \quad W(\overline{z}) = W_k(\overline{z}) + \dots, k > 2$$
(1.6)

It is clear that

$$P(z) = \frac{1}{2}(Dc(z), c(z)) + W(z)$$

$$(c(z) = b(y = 0, z) = c_m(z) + \dots, m > j - 1)$$
(1.7)

It follows from the assumptions relating to case (a) that the function $W(z) \not\equiv 0$ and that it is non-positive. Let the assumptions of case (b) now be satisfied. If 2m > r, then k = r and $W_k(z) \equiv P_r(z)$. If $2m \le r$, then k = 2m and $W_k(z) \le 0$. Consequently, under the assumptions of Theorem 1, the first non-trivial form $W_r(z)$ in the Maclaurin series of the function W(z) takes negative values. Next, we can use the result in [1], according to which asymptotic motions exist, with their asymptotic expansions in the variables \overline{y} , \overline{z} of the form

$$\overline{y} = \sum_{i=0}^{\infty} \frac{y_i(\tau)}{t^{2+\mu(2+i)}}, \quad \overline{z} = \sum_{i=0}^{\infty} \frac{z_i(\tau)}{t^{\mu(1+i)}}, \quad \tau = \ln(t), \quad \mu = \frac{2}{k-2}$$

where y_i and z_i are certain polynomials of τ . The theorem is proved.

We note that the situation when $P_r \ge 0$ remains uninvestigated. It is clear that then r is even. If the form P_r , is positive definite and 2(j-1) > r, the potential energy has a local minimum at the equilibrium and there are no asymptotic motions. If 2(j-1) < r and 2(j-1) < r and

The following theorem is now proved.

Theorem 2. If $P_r \ge 0$, r > 2(j-1) and grad $\Pi_{j|x} \ne 0$, then an asymptotic motion exists.

Corollary 1. Under the assumptions of Theorems 1 and 2, the equilibrium x=0 is unstable.

2. We will now consider a more general case when, instead of a real system, we consider a system with a semireal Lagrangian

$$L = \frac{1}{2} \langle K(x) x^*, x^* \rangle + \langle v(x), x^* \rangle - \Pi(x)$$
 (2.1)

where v(i) is an analytic vector field in \mathbb{R}^n . Without loss of generality, let us assume that v(x) = 0. The expansion of v(x) in a Maclaurin series has the form $v(x) = v_m(x) + v_{m+1}(x) + \dots$, $m \ge 1$. The remaining assumptions are the same as in Sec. 1.

The following theorem is proved using a procedure similar to that employed in Sec. 1.

Theorem 3. System (1.1), (1.2) possesses an asymptotic motion if one of the following conditions is satisfied:

- (a) m < [r/2] and P_r can take negative values,
- (b) m > j-1, r > 2(j-1) and grad $\Pi_{i|x} \not\equiv 0$.

When r = j, case (a) follows from the result in [5].

We note that, if x(t) is the motion of a system with the Lagrangian (2.1), then x(-t) is the motion of a system with the Lagrangian $L^- = L(x, -x^*)$ and vice versa. Since the conditions of Theorem 3 are time reversal invariant the following corollary holds.

Corollary 2. Under the above-mentioned assumptions, the position of equilibrium x=0 is unstable.

3. Let s constraints, which are linear with respect to the velocities $\langle a_i(x), x^* \rangle = 0$, i = 1, ..., s < n, where $a_i(x)$ is an analytic vector field in \mathbb{R}^n and $a_i(0) \neq 0$, be additionally imposed on a semireal system. The vectors a_i are assumed to be linearly independent. The motion of such a system is described by Lagrange equations with the factors

$$\frac{d}{dt} \frac{\partial L}{\partial x^{*}} - \frac{\partial L}{\partial x} = \sum \lambda_{i} a_{i}, \quad \langle a_{i}(x), x^{*} \rangle = 0, \quad i = 1, \dots, s$$
(3.1)

We denote by \hat{P}_r , the restriction of the form P_r in a subspace orthogonal to all the constraints at zero.

Theorem 4. If m > [r/2] and the form \hat{P} , can take negative values, then an asymptotic motion of system (3.1) exists and the equilibrium x = 0 is unstable.

When $v(x) \equiv 0$ and r = j, Theorem 4 is identical to the result obtained in [6] and, when $\Pi_2 \equiv 0$, it is identical to the analytic case of the result in [7].

In order to prove Theorem 4, it is first necessary to expand the potential energy in the form of (1.6) and then use the well-known technique in [6].

REFERENCES

- 1. KOZLOV V. V., Asymptotic motions in problems of the inversion of the Lagrange-Dirichlet theorem. *Prikl. Mekh.* 50, 6, 928-937, 1986.
- 2. KOZLOV V. V., Hypothesis concerning the existence of asymptotic motions in classical mechanics. Funkts. Analiz i ego Prilozheniya 16, 4,72-73, 1982.
- KNESER A., Studien über die Bewegungsvorgänge in der Umgebung instabiler Gleichgewichtslagen, J. reine und angew. Math. 118, 3, 186-223, 1987.
- 4. GILMORE R., Applied Catastrophe Theory, Vol. 1. Mir, Moscow, 1984.
- 5. SOSNITSKII S. P., On the instability of the equilibrium of real systems. In *Problems of the Investigation of the Stability and Stabilization of Motion*. Izd. Vychisl. Tsentra Akad. Nauk SSSR, Moscow, 1991.
- VINNER G. M., Asymptotic motions of mechanical systems with non-holonomic constraints. Prikl. Mat. Mekh. 53, 4,549-555, 1989.
- SOSNITSKII S. P., On the stability of the equilibria of non-holonomic systems in a particular case. Ukr. Mat. Zh. 43, 4,440-447,1991.

Translated by E.L.S.