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The problem of the existence of asymptotic motions of mechanical systems in the case when the 

Maclaurin series of the potential energy begins with a permanently positive quadratic form is investi- 

gated using the methods described in [l]. 

1. FIRST we consider the motion of a mechanical system which is described by Lagrange’s equations with 
an analytic Lagrangian 

d aL 
--- “L=O, XER”; L&, X’)’ T(x, x’) - II(x) 
dt ax’ ax 

(1.1) 

where T = X(K(x)x’, x’) is the kinetic energy (K(x) is a positive definite matrix and ( , ) is a scalar 

product in R”) and II(x) is the potential energy. Let us assume that system (1.1) has a position of 

equilibrium which, without any loss of generality, we consider to be the origin of coordinates, and let 

lT(0) = 0. A motion x(t) f 0 is referred to as asymptotic motion if x(t) + 0 when t + 00. By virtue of time 

reversibility (x(-t) is also a motion), the instability of the equilibrium in the sense of the Lyapunov 
definition follows from the fact that an asymptotic motion exists. 

The hypothesis has been formulated in [2]: if the function l-I(x) does not have a minimum at the point 

x = 0, then an asymptotic motion exists. 
The proof of this hypothesis is a complex problem which has been solved under certain additional 

conditions. The fit results in this area were obtained by Kneser [3] while the most powerful results are 

due to Kozlov [l]. We will supplement these assertions with Theorems 1 and 2 which are presented below 
and we will then formulate certain generalizations to non-real systems. 

Suppose 

nlx)=n,(X)+njlr)+...O<j) (l-2) 

are the expansion of the potential energy in a Maclaurin series, TI, are homogeneous forms of degree i 

and TI, is the first non-trivial form after the quadratic form. Henceforth it is assumed that the quadratic 
form Tl, has 1 (1 G 2 c n) zero eigenvalues and n -1 positive ones. We note that, if 1= 0, the equilibrium is 
stable and there are no asymptotic motions. We will denote by P the restriction of the function lT in an l- 

dimensional plane A = [x : II,(x) = 0). 

Theorem 1. System (l.l), (1.2) possesses an asymptotic motion if one of the two following conditions is 

satisfied: 
(a) the function n(x) has no minimum at the point x = 0 and P = 0, 
(b) the fist non-trivial form P, in the expansion of the function P can take negative values. 
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We note that in case (b), the forms II,, . . . , ll,_, can take both positive and negative values. 
When r = j, case (b) is identical with the result obtained in [l]. 

Proof. Normal coordinates can be introduced in the neighbourhood of the point x = 0 in which (E is a 
unit matrix) 

T=%((E+B(x))r’,x’,, B(O)=0 

n=‘/i(Dy,y)+rlf&)+ . . . . D=diag(A$,$>O, i=l,..., n-l 

x=(~,z),y~R”-‘, ZER’ 

According to the splitting lemma [4], by means of a linear substitution of the form 

(1.3) 

(1.4) 

y=y+b(x), b(x)=bl_t(x)+bj(X)+..., Z=z 

it is possible to reduce expansion (1.4) to the form 

(1.5) 

ii=%(Djr,~)+W(Y.), W(F)=W#)+...,k>Z (1.6) 

It is clear that 

P(z) 3 Yz(DC(Z), C(z)) + W(Z) 

(C(z)=b(Y=O,Z)=Cm(z)+...,m>/-l) 
(1.7) 

It follows from the assumptions relating to case (a) that the function W(z)+0 and that it is non- 
positive. Let the assumptions of case (b) now be satisfied. If 2m> r, then k = r and W,(z)= P,(z). If 

2m d r, then k = 2m and WJz) s 0. Consequently, under the assumptions of Theorem 1, the first non- 

trivial form W,(z) in the Maclaurin series of the function W(z) takes negative values. Next, we can use the 

result in [l], according to which asymptotic motions exist, with their asymptotic expansions in the 

variables 7, 7 of the form 

ji=; 
Yj(7) 

[* -$+m+o 

where y, and z, are certain polynomials of 

We note that the situation when P, 30 
form P, is positive definite and 2(j-l)> r, 

i=; ____ 
Zi(7) 2 

j* tP(t+l)’ 
7 = In(r), *= - 

k -2 

r. The theorem is proved. 
remains uninvestigated. It is clear that then r is even. If the 
the potential energy has a local minimum at the equilibrium 

and there are no asymptotic motions. If 2(j-1) < r and grad II,,, f 0 then c,_~ f 0 in expression (1.7). 
Consequently, k = 2(j- 1) and W, d 0. 

The following theorem is now proved. 

Theorem 2. If P, 3 0, r > 2( j - 1) and grad II,,, + 0, then an asymptotic motion exists. 

Corollary 1. Under the assumptions of Theorems 1 and 2, the equilibrium x = 0 is unstable. 

2. We will now consider a more general case when, instead of a real system, we consider a system with a 
semireal Lagrangian 

L=W<KOr)x’, X0)+ (U&),X’) - l-l(x) (2.1) 

where u(i) is an analytic vector field in R”. Without loss of generality, let us assume that u(x) = 0. The 

expansion of u(x) in a Maclaurin series has the form u(x) = u,(x)+v,+~(x)+ . . . , m 2 1. The remaining 
assumptions are the same as in Sec. 1. 

The following theorem is proved using a procedure similar to that employed in Sec. 1. 



Remarks on the asymptotic motions of mechanical systems 727 

Theorem 3. System (l.l), (1.2) possesses an asymptotic motion if one of the following conditions is 

satisfied: 
(a) m <[r/2] and P, can take negative values, 
(b) m>j-1,. r>2(j-1) and gradlI,,,gO. 
When r = j, case (a) follows from the result in [5]. 
We note that, if x(t) is the motion of a system with the Lagrangian (2.1), then x(-f) is the motion of a 

system with the Lagrangian L- = L(x, -x’) and vice versa. Since the conditions of Theorem 3 are time 

reversal invariant the following corollary holds. 

Corollary 2. Under the above-mentioned assumptions, the position of equilibrium n = 0 is unstable. 

3. Lets constraints, which are linear with respect to the velocities (a*(x), x’) = 0, i = 1, . . . , s < n, where 

a,(x) is an analytic vector field in R” and a,(O) z 0, be additionally imposed on a semireal system. The 

vectors a, are assumed to be linearly independent. The motion of such a system is described by Lagrange 
equations with the factors 

d a~ aL 
_--- 
dt ax’ ax 

=ZhtUt, tUi@),X’)=O, i=l,..., S (3.1) 

We denote by e, the restriction of the form P, in a subspace orthogonal to all the constraints at zero. 

Theorem 4. If m > [r/2] and the form i, can take negative values, then an asymptotic motion of system 

(3.1) exists and the equilibrium x = 0 is unstable. 
When u(x)= 0 and r = j, Theorem 4 is identical to the result obtained in [6] and, when II, I 0, it is 

identical to the analytic case of the result in [7]. 

In order to prove Theorem 4, it is first necessary to expand the potential energy in the form of (1.6) and 
then use the well-known technique in [6]. 
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